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ABSTRACT 

The estimation of evapotranspiration (ET) is important for efficient water resources 

management. Traditional ground-based techniques are limited by their coverage of spatial areas 

and therefore satellite-based methods are considered suitable alternatives. However, these 

possess limitations as well. Inadequate consideration for the influence of soil moisture on ET 

has been identified as a potential issue which would be relevant in water-stressed arid or semi-

arid regions. The modification of the kB-1 parameter, which accounts for the difference between 

radiometric and atmospheric temperature, has been discussed as a possible means to improve 

upon this limitation. The objectives of this study were to first determine if overestimation of 

ET in a water-stressed environment does occur. Then to determine how sensitive estimates 

were to modifications of kB-1. The Surface Energy Balance System (SEBS) model was chosen 

to test this and was run for an approximately two-month period in 2015. Estimates obtained 

were validated against in-situ data from an Eddy Covariance flux tower. The initial results 

showed that a significant overestimation of ET was occurring, possibly due to the soil moisture 

limitation in SEBS. The reduction of kB-1 values by varying degrees successfully reduced this 

overestimation. However, error days were identified on which kB-1 reduction did not yield this 

desired effect. This issue was found to be attributed to errors in the calculation of the 

evaporative fraction in the model. The exceedance of a threshold value resulted in the ET 

increasing with kB-1 reduction rather than decreasing. This evaporative fraction induced error 

could possibly be due to kB-1 being reduced too low to moderate the radiometric-atmospheric 

temperature gradient. Other underlying issues relating to sensible heat flux calculation and 

environmental factors may influence this as well. Ultimately it was found that kB-1 reduction 

will generally reduce ET overestimation under water-stressed conditions. However, the effect 

of potential error as a result of other influential parameters should be considered. The findings 

of the study would be relevant to future work concerned with the use of energy balance models 

in research and water resources management applications.  
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1. INTRODUCTION 

Evapotranspiration (ET) is a combined process which includes water being removed from plant 

and soil surfaces through evaporation and plant water losses through transpiration (Senay et al., 

2016). ET represents interactions between soil, vegetation, the atmosphere, and influences 

numerous ecosystem processes (Liu et al., 2013). Hence it forms a central element of the surface 

energy balance and water budget. Accurate quantification of ET rates is therefore vital for 

planning and design of hydrological, agricultural and socio-economic systems. This is 

especially true for arid and semi-arid regions, such as South Africa, which has relatively high 

ET rates that return a significant portion of MAP to the atmosphere (Jarmain et al., 2009a).  

Water availability issues are aggravated by the spatial and temporal variability of rainfall 

(Gokool et al., 2016). Hence accurate ET estimates are necessary to facilitate improved 

allocation of water resources. There are various techniques which have been traditionally used 

to estimate ET at field or local scales. These in-situ methods have been validated and tested in 

multiple environments and conditions, improved upon and become well-established through 

employment in hydrological studies and modelling (Drexler et al., 2004). However, the spatial 

and temporal variability of ET creates the need to acquire accurate measurements at larger 

geographic scales and across multiple environmental settings (Elhag et al., 2011). This reduces 

the applicability of in-situ methods due to issues such as feasibility, labour and time (Elhag et 

al., 2011). 

1.1 Rationale 

Satellite-based Earth Observation (SEO) techniques have been shown to provide suitable 

alternatives to conventional ET estimation methods (Drexler et al., 2004; Gibson et al., 2013; 

Webster et al., 2017). These allow for data capture over large areas and improved understanding 

of the hydrological cycle through various applications, including the estimation of ET (Wang 

and Dickinson, 2012). Several models exist which can use satellite-derived data to provide 

hydrological information. Techniques based on the parameterization of the shortened energy 

balance are among the most frequently applied operationally and for research purposes. These 

can be integrated into hydrological models for planning, design and informed decision making 

(Consoli and Vanella, 2014). However, several issues remain which cause discrepancies in 

satellite-based ET estimates. Trade-offs between satellite revisit time and spatial resolution 

remain an issue (Gokool et al., 2017). There is also added difficulty in working with cloud 

cover in imagery (Peng et al., 2013). Further general limitations include inter alia; difficulty 
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when estimating over heterogeneous surfaces, mismatch of scale between satellite image pixel 

size and study area, failure to adequately account for underlying environmental conditions 

(Jarmain et al., 2009a; Gibson et al., 2013).  

One of the major limitations with models grounded on the energy balance approach is linked to 

the estimation of ET under water-stressed conditions. This has been attributed to the failure to 

adequately account for soil moisture. kB-1 is an aerodynamic parameter used to account for the 

excess resistance to heat transfer (Gibson et al., 2011). It corrects for the difference between 

radiometric and atmospheric temperature and is influenced by multiple variables relating to 

structural parameters and environmental conditions (Zhuang et al., 2016). Several energy 

balance models include the parameter in their formulation. The modification of this parameter 

has been identified, through numerous studies, as a means of addressing the limitations 

associated with ET estimation in water-stressed conditions (Timmermans et al., 2013; Paul et 

al., 2014; Zhuang et al., 2016). Despite the modification of kB-1 being identified as a solution 

to inaccurate ET estimation, there remains a need to establish how sensitive ET is to changes 

in values of the parameter.  

1.2 Research Aims and Objectives 

The overall aim of the study is to obtain an improved understanding of how the kB-1 parameter 

can influence the accuracy of terrestrial flux and ET estimates. For this purpose, the following 

objectives were identified: 

• Review current techniques which utilize satellite earth observation data to estimate 

total evaporation. 

• Evaluate the accuracy of satellite-derived ET estimates during conditions of water 

stress. 

• Evaluate the sensitivity of the satellite-based ET approach to modifications in the 

kB-1 parameter. 

1.3 Research Questions  

• Can a relationship be established between the kB-1 parameter and ET estimates 

produced by an energy balance model?  

• Does the overestimation of ET under water-stressed conditions occur and will 

modifying kB-1 reduce the inaccuracy? 
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2. LITERATURE REVIEW 

The majority of techniques for estimating ET are based on fundamental principles which 

describe energy distribution through surface-atmosphere interactions. The energy balance 

approach underlies most in-situ techniques and is generally described by the shortened energy 

balance equation (Allen et al., 2011). This represents the relationship, with all fluxes in W m-2, 

between soil heat flux, (G), sensible heat flux (H), latent heat flux (λE) and net radiation (Rn) 

as: 

𝑅𝑛 = 𝐺 + 𝐻 + 𝜆𝐸                                                                                                                 (2.1) 

A secondary underlying principle is the Monin-Obukhov Similarity Theory (MOST). This 

theory is widely accepted and used for determining vertical profiles of mean flow within the 

surface layer by relating turbulence to energy and assuming similarity between fluxes (Savage 

et al., 2004). The underlying principles are seen in both conventional approaches and energy 

balance models. A brief narrative of these approaches is provided in the following sub-sections. 

2.1 Conventional Approaches of ET Estimation  

The Bowen Ratio technique involves the measurement of gradients of air temperature and 

vapour pressure in the near-surface layer where evaporation is occurring (Allen et al., 2011). 

There are two different types of Bowen ratio systems (Jarmain et al., 2009b). The single-sensor 

method uses a hygrometer and two air temperature sensors, with air being pumped alternatively 

between levels. The oscillating system uses two sensors, one per measurement level to 

determine air temperature and water vapour pressure (Jarmain et al., 2009b). The approach does 

not require aerodynamic data and offers automated measurements with non-destructive, direct 

sampling (Allen et al., 2011). However, it requires sufficient fetch clear of obstructions and the 

parameterisation encounters error in conditions where H approximates zero (Jarmain et al., 

2009b).  

Lysimetry has been extensively used to provide measurements for the calibration and validation 

of other ET estimation approaches (Allen et al., 2011). This technique determines ET by 

measuring variations in the mass of the soil which rests on top of the lysimeter system, 

consisting of an underground scale and computer (Allen et al., 2011). Measurements are 

translated into ET losses after considering other water inputs and outputs in the controlled 

environment. The method has a relatively small fetch requirement and can be mechanically 
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calibrated for automated measurements. However, it is a point measurement and does represent 

the spatial variability of ET over a study area (Gibson et al., 2013).  

Scintillometry involves the measurement of fluctuations of an emitted light beam or wave 

between a transmitter and receiver, between one and five kilometres apart (Kleissl et al., 2008). 

These measurements are converted to path-weighted H values according to MOST (Allen et 

al., 2011). The various scintillometer types including the BLS, SLS and LAS vary according to 

path length sensitivity (Savage et al., 2004). The foremost advantage of the scintillometry 

approach is that it provides spatially representative ET estimates over larger areas (Liu et al., 

2013). However, it is influenced by surface cover and wind changes, measures the magnitude 

of H only and assumes weak scattering which may not hold for strong turbulence conditions 

(Allen et al., 2011).  

The Light Detection and Ranging System (LIDAR) technique involves laser-based 

transmission of electromagnetic radiation in infrared, visible or ultraviolet wavelength ranges 

(Drexler et al., 2004). Photomultiplier tubes or other sensors are used to receive backscattered 

radiation. The analysis of the wavelengths and scattering between the emitter and receiver 

allows for the estimation of temperature, wind and atmospheric constituent concentrations 

(Drexler et al., 2004). Water vapour mixing ratio gradients are system outputs. Linear 

regression with MOST functions of surface fluxes is used to determine ET (Drexler et al., 

2004). The provision of a spatially-representative estimate of water vapour flux instead of a 

point measurement is a key advantage of LIDAR. However, the instrumentation required for 

this system is relatively expensive (Drexler et al., 2004).  

The Heat Pulse Velocity (HPV) technique is one of two commonly used sapflow techniques, 

with the other being the stem state heat energy balance approach (Savage et al., 2004). 

Thermocouples and heater probes are fitted into the tree trunk. The increase in temperature 

measured above the points of heat introduction is used to indicate sapflow, which is then 

converted into transpiration measurements. A major limitation is that transpiration estimates 

are obtained for a single tree and is difficult to upscale over an area (Savage et al., 2004). 

Furthermore, additional soil moisture estimates are needed to obtain ET. According to Savage 

et al. (2004), the HPV technique for sapflow measurement in woody plants is internationally 

recognised. Furthermore, it has been extensively applied under South African conditions. 

The Surface Renewal approach is used to estimate H. Measurements are combined with values 

of G and Rn to estimate ET from the energy balance equation  (Gokool et al., 2016). The basis 
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of the theory is heat transfer of air parcels, whereby parcels enriched by a scalar parameter, 

such as air temperature, near the surface are exchanged for air parcels from above (Drexler et 

al., 2004). The method requires high frequency air temperature measurements, vegetation, 

measurement height and air temperature gradient data (Gokool et al., 2016). Furthermore, a 

weighting factor, obtained by validation with another technique, such as Eddy Covariance must 

be applied. A further disadvantage of this approach is that it provides point-based estimates of 

ET (Zeri et al., 2013). However, the method is fairly inexpensive, portable, has minimal 

instrumentation requirements, can be installed in dense canopies and allows for long term use 

in remote sites (Zeri et al., 2013).  

The Eddy Covariance technique is amongst the most frequently applied in-situ methods for 

estimating ET (Allen et al., 2011). The statistical correlation between vertical fluxes of sensible 

heat or water vapour and the movement of air within turbulent eddies is determined, with the 

covariance being directly proportional to H (Jarmain et al., 2009b). In other cases, evaporation 

can be estimated by using λE and the shortened energy balance equation. Eddy Covariance 

systems have a number of advantages including portability, non-invasive sampling, co-

measurement of variables and system automation (Allen et al., 2011). However, high 

frequency, data-intensive measurements are required and energy balance closure issues may 

arise from heat storage in vegetation canopies, horizontal advection and instrument failure 

(Allen et al., 2011).  

2.2 Satellite-Based ET Estimation Techniques 

Conventional techniques have been extensively applied for ET estimation. However, these 

methods are limited in their ability to provide estimates at large geographic scales. Satellite-

based ET estimation methods are able to cover larger areas. Hence, they are viewed as suitable 

alternatives to conventional techniques. They have been used to provide estimates over scales 

ranging from regional to global (Webster et al., 2017). There are various types of satellite-based 

ET models which are frequently applied.  However, only a few examples will be reviewed as 

part of the discussion in the following section.  

The Surface Energy Balance Algorithm for Land (SEBAL) model is an extensively used, 

single-source model based on ET estimation utilising surface energy balance theory and can be 

applied at a variety of spatial and temporal scales (Paul et al., 2014). The model only requires 

field information on shortwave atmospheric transmittance, height of the vegetation and the 

image acquisition time aside from calibration requirements for different geographical regions 



6 

 

(Wang and Dickinson, 2012).  SEBAL calculates a single temperature gradient for the study 

area between two points of hydrological contrast, the dry and wet pixels of an image (Paul et 

al., 2014). The wet pixel location is ideally a full canopy vegetation surface with no limiting 

soil water. The conditions for the contrasting pixels are user-dependent. According to Gibson 

et al. (2013), extensive application of the model has occurred in South Africa for numerous 

water resources management scenarios. 

The Mapping ET at high Resolution with Internalised Calibration (METRIC) model was 

initially developed for field scale applications using Landsat imagery (Liaqat and Choi, 2015). 

It is derived from SEBAL by incorporating reference ET in order to reduce errors from 

aerodynamic resistance and account for regional advection of heat (Liaqat and Choi, 2015). A 

linear relationship between near-surface temperature gradient and surface temperature forms 

the basis of the model. This is achieved by applying the CIMEC process, which determines 

extreme or near-extreme conditions in an image to use as endpoints for ET estimation. These 

are generally taken as the dry and wet ends of the ET spectrum (Allen et al., 2013).  

The Two-Source Energy Balance (TSEB) model uses two different budgets, taking H as the 

sum of the contributions from soil and vegetative surfaces (Consoli and Vanella, 2014). 

Vegetation is assumed to transpire at a potential rate under unstressed conditions and soil 

evaporation rates, relative to unstressed conditions, can indicate vegetation stress and canopy 

transpiration (Chirouze et al., 2014). Numerous variations associated with ET estimation 

pathways exist. The choice of application depends on the user’s needs  (Song et al., 2016).  

The Simplified Surface Energy Balance (SSEB) approach uses reference ET and LST data, 

derived from the Penman-Monteith approach applied to a reference crop with full vegetation 

cover and no water stress (Senay et al., 2011). The formulation calculates ET utilising LST data 

obtained from satellite imagery. Pixels are identified by NDVI according to ET rates, assuming 

that dry, hot pixels experience the lowest ET rates while wet, cold pixels experience the highest 

or maximum rates (Senay et al., 2011).  

The Surface Energy Balance System (SEBS) is used for the estimation of atmospheric turbulent 

fluxes from SEO data (Su, 2002). It is  a physically-based model, derived from the shortened 

energy balance equation, which estimates H via a single-source pathway (Gokmen et al., 2012). 

The parameterisation includes an extended model for establishing the roughness height for heat 

transfer and estimation of the evaporative fraction, which is based on dry and wet limiting cases 

and remains constant during the day (Timmermans et al., 2013). SEBS does not consider the 
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effect of soil moisture and biophysical conditions during surface flux estimation, which may 

result in inaccurate estimates under water-stressed conditions (Gokool et al., 2017).  

A summary of the key structural components, strengths and limitations as associated with the 

aforementioned models is provided in Table 2.1. The SEBS model was identified to have the 

traits which were most suitable to the scope of the study. The model is versatile in usage, open-

source and simple to implement. Furthermore, the model contains the parameter under 

investigation. Hence the study will utilise SEBS to investigate the influence of kB-1 on ET.   
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Table 2.1 Comparison of reviewed satellite-based approaches 

Approach Structure Advantages Disadvantages 

SEBAL Single-source model, 

calculates a single 

temperature gradient 

between points of 

hydrological 

contrast.  

• Flexible 

application. 

• Reliable results. 

• Commercial product. 

METRIC Variant of SEBAL, 

incorporates 

reference ET.  

• Accounts for soil 

type and LST. 

• Commercial product. 

• Requires high quality input 

data. 

TSEB Separates energy 

contributions from 

soil and vegetation 

and assumes 

transpiration at a 

potential rate. 

• More defined 

energy balance 

for flux 

estimation. 

• Requires validation against 

ground measurements. 

SSEB Uses reference ET 

and LST 

Employs Penman-

Monteith and NDVI 

approaches.  

• Accurate, rapid 

and cost-

effective ET 

estimates over 

large areas. 

• Assumptions are made for 

the extremes of pixel ET 

rates. 

SEBS Physically-based, 

single-source 

technique derived 

from the shortened 

energy balance 

equation.  

• Open-source 

software. 

• Estimates 

various fluxes 

and parameters. 

• Developed for energy-

limiting conditions. 

• Displays inaccuracy in 

water-stressed 

environments. 
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2.3 SEBS Model Formulation  

The main components of the SEBS model formulation are shown below; the complete 

formulation can be seen in Su (2002). The SEBS model is derived from the shortened energy 

balance equation (2.1). The equations to calculate Rn and G are given by: 

𝑅𝑛 = (1 −  𝛼) 𝑅𝑠𝑤𝑑  + 𝜀 𝑅𝑙𝑤𝑑 − 𝜀𝜎𝑇0
4                                                                                (2.2) 

𝐺 =  𝑅𝑛 [Г𝑐 + (1 − 𝑓𝑐)(Г𝑠 − Г𝑐)]                                                                                       (2.3) 

Where 𝛼 is the albedo, 𝜀 is the surface emissivity, 𝑅𝑠𝑤𝑑  is the downward solar radiation, 𝑅𝑙𝑤𝑑  is 

the downward longwave radiation, 𝜎 is the Stefan-Bolzmann constant and 𝑇0 is the surface 

temperature.  Г𝑐 is the ratio of soil heat flux to net radiation for a full vegetation canopy and  Г𝑠 

is for bare soils. They are assumed values of 0.05 and 0.315 respectively. 𝑓𝑐 is the fractional 

canopy coverage.  

The principles of MOST are used to derive 𝐻 and 𝜆𝐸, with a distinction being made between 

the atmospheric boundary layer (ABL) and ASL. The bulk transfer parameter kB-1 and the 

roughness height for momentum transfer, 𝑧𝑜𝑚, is used to derive the scalar roughness height for 

heat transfer, 𝑧𝑜ℎ. A quadratic weighting, 𝑘𝐵𝑠
−1 uses 𝑓𝑐 to accommodate for conditions in 

between full vegetation and bare soil as shown below:   

𝑘𝐵−1 =  
𝑘𝐶𝑑  

4𝐶𝑡  
𝑢∗

𝑢(ℎ)
(1−𝑒

−𝑛𝑒𝑐 
2 )

 𝑓𝑐
2 + 2𝑓𝑐𝑓𝑠 

𝑘 
𝑢∗

𝑢(ℎ)
 
𝑧𝑜ℎ

ℎ

𝐶𝑡
∗ + 𝑘𝐵𝑠

−1𝑓𝑠
2               (2.4) 

𝑘𝐵𝑠
−1 = 2.46(𝑅𝑒∗ )

1

4 − ln[7.4]                           (2.5) 

𝑧𝑜ℎ = 𝑧𝑜𝑚 exp (𝑘𝐵−1)⁄           (2.6) 

Where 𝐵−1 is the inverse Stanton number, a dimensionless heat transfer coefficient, 𝐶𝑑  is the 

drag coefficient of the foliage elements (assumed as 0.2), 𝑢(ℎ) is the horizontal wind speed at 

the canopy top,  𝑓𝑠 is the soil fraction (a complement of 𝑓𝑐). 𝐶𝑡  is the heat transfer coefficient of 

the leaf (0.005𝑁 ≤ 𝐶𝑡  ≤ 0.075𝑁 For most environments, N is the number of sides of a leaf to 

participate in heat exchange). The parameter 𝑛𝑒𝑐 is the within canopy wind speed profile 

extinction coefficient, 𝐶𝑡
∗ is the heat transfer coefficient of the soil and 𝑅𝑒∗  is the roughness 

Reynolds number. The parameterisations for these and other sub-parameters can be seen in Su 

(2002).  
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The SEBS model contains formulation for determining the evaporative fraction, Λ, at limiting 

cases. Under the dry limit, evaporation becomes zero due to the soil moisture limitation, while 

H is at a maximum rate, 𝐻𝑑𝑟𝑦. Under the dry limit, evaporation occurs at a potential rate, 𝜆𝐸𝑤𝑒𝑡, 

while H is at a minimum, 𝐻𝑤𝑒𝑡. These are used for determining the relative evaporative fraction, 

Λ𝑟. Bulk internal and external resistances are then used to derive 𝜆𝐸:  

Λ𝑟 = 1 −
𝐻−𝐻𝑤𝑒𝑡

𝐻𝑑𝑟𝑦−𝐻𝑤𝑒𝑡
             (2.7) 

𝜆𝐸 =  
Δ𝑟𝑒 (𝑅𝑛−𝐺 )+𝜌𝐶𝑝  (𝑒𝑠𝑎𝑡−𝑒)

𝑟𝑒(𝛾+Δ)+𝛾 𝑟𝑖
  (2.8) 

Where Δ is the rate of change of saturation vapour pressure with temperature, 𝑟𝑖 is the bulk 

internal resistance, 𝑟𝑒 is the aerodynamic resistance, 𝑟𝑒𝑤 is the external resistance at the wet 

limit, 𝑒 and 𝑒𝑠𝑎𝑡 are the actual and saturation vapour pressures, respectively. 𝜌 is the air density, 

𝐶𝑝  is the specific heat capacity at constant pressure and 𝛾 is the psychrometric constant.  

The actual evaporative fraction, Λ is ultimately calculated as: 

Λ =
Λ𝑟 𝜆𝐸𝑤𝑒𝑡

𝑅𝑛−𝐺
                                              (2.9)    

The daily ET value (mm d-1) is then calculated as: 

𝐸𝑇 = 8.64 × 107 ×
Λ .𝑅𝑛̅̅ ̅̅

𝜆 .𝜌𝑤
              (2.10) 

Where 𝜆 is the latent heat of vaporisation (J kg-1), 𝜌𝑤 is the density of water (kg m-3), and 

8.64 × 107 is the constant for conversion of instantaneous ET to a daily value (Gibson et al., 

2013).  

2.4 Modification of SEBS 

The majority of energy balance models inadequately account for the influence of soil moisture 

on ET. Such models incorporate the effects of soil evaporation, soil moisture storage, 

transpiration and other processes into a single LST variable (Gokmen et al., 2012). SEBS is 

designed for energy-limiting cases, which limits its ability to represent ET in water-limiting 

environments (Timmermans et al., 2013).  

The original SEBS formulation by Su (2002) was modified by Gokmen et al. (2012), to more 

effectively consider the influence of soil moisture on ET and improve estimation in water-

stressed conditions. The SEBS-SM approach decreases kB-1 as water stress increases, according 
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to stomatal conductance in a canopy. This in turn decreases aerodynamic resistance, which 

increases H and results in lower ET estimates (Gokmen et al., 2012). The SEBS formulation is 

modified by the addition of a scaling factor (SF), presented by a sigmoid function: 

𝑆𝐹 = [𝑎 +
1

(1+exp(𝑏−𝑐∗𝑆𝑀𝑟𝑒𝑙))
]                                                     (2.11) 

𝑆𝑀𝑟𝑒𝑙 =
𝑆𝑀−𝑆𝑀𝑚𝑖𝑛

𝑆𝑀𝑚𝑎𝑥−𝑆𝑀𝑚𝑖𝑛
        (2.12) 

𝑘𝐵−1 = 𝑆𝐹 ∗ 𝑘𝐵−1
𝑆𝐸𝐵𝑆           (2.13) 

Where 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are coefficients of the stigmoid function. These are determined through 

performing an optimisation by error reduction between observed and simulated H values.  

𝑆𝑀𝑟𝑒𝑙 is the relative soil moisture value, used to determine water stress level. 𝑆𝑀 is the actual 

soil moisture (m3 m-3). 𝑆𝑀𝑚𝑖𝑛 and 𝑆𝑀𝑚𝑎𝑥  are the minimum and maximum soil moisture 

respectively (m3 m-3). Once the kB-1 parameter has been adjusted as shown in (2.13), the model 

must be re-run.  

2.5 Case Studies 

Gokmen et al. (2012) integrated soil moisture information into the SEBS model by Su (2002) 

to account for water stress and improve ET mapping in water-limited conditions. The excess 

resistance parameter, kB-1 was altered by the addition of a scaling factor which considered 

relative soil moisture (Gokmen et al., 2012). Outputs of H from the updated version of the 

model, SEBS-SM, were then compared to the original as well as measurements obtained from 

the Bowen Ratio technique. The study was performed in the Konya Basin in Turkey (Gokmen 

et al., 2012).  

A study by Chirouze et al. (2014) involved assessing the performance of various models under 

conditions of water stress and where water was not a limiting factor. The study occurred over 

an irrigated agricultural area in the semi-arid region of New Mexico (Chirouze et al., 2014). 

Here the performance of S-SEBI, SEBS and TSEB models were compared to in-situ data and 

against outputs from a soil-vegetation-atmosphere transfer (SVAT) model (Chirouze et al., 

2014).  

Pardo et al. (2014) conducted a study to evaluate three variations of the SEBS model: the 

original formulation, SEBS-SM by Gokmen et al. (2012) and SEBS-NDVI which was modified 

with NDVI and surface temperature. The models were applied to a rotating agricultural 
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cropland to evaluate SEBS for energy balance components and the evaporative fraction (Pardo 

et al., 2014). The estimates of the evaporative fraction from the three SEBS variations were 

compared to those from Eddy covariance flux towers (Pardo et al., 2014). 

Paul et al. (2014) highlighted the use of kB-1 parameterization in SEBAL. The parameter 

accounts for the discrepancy between radiometric and aerodynamic temperature. These are used 

in determining the temperature gradient for estimating ET. The study involved SEBAL being 

applied to both dryland and irrigated conditions. Four variations of the model were used, two 

which utilized different fixed roughness heights; one which used a fixed kB-1 set at 2.3 and one 

which utilized a spatially-varying kB-1 (Paul et al., 2014). 

Zhuang et al. (2016) highlighted that the kB-1 parameter is difficult to obtain values for as it is 

influenced by both structural parameters characteristics and environmental conditions. This 

follows work by Gokmen et al. (2012), which discussed the influence of soil moisture on kB-1 

and Paul et al. (2014), which showed ET estimation in SEBAL to be sensitive to the parameter. 

Therefore Zhuang et al. (2016) proposed an approach for estimating H without using kB-1. 

Modification of the single-source bulk transfer equation from which kB-1 was derived occurred 

using canopy, environmental and radiometric surface temperature parameters. The study 

occurred over crop and grasslands in a river basin in northwest China. Results from methods 

based on kB-1 were compared to LAS and the new approach (Zhuang et al., 2016). 

A study conducted in a desert-oasis environment in North-western China by Yi et al. (2018) 

involved modifying the kB-1 parameter through integrating the modified perpendicular drought 

index (MPDI) into SEBS. The MPDI makes use of the Chinese HJ-1 satellite which has a fairly 

high spatial and temporal resolution for land surface variable measurement. This imagery was 

fed into SEBS with soil moisture estimates from the MPDI (Yi et al., 2018). The soil moisture 

from MPDI was integrated into SEBS through a scaling factor, similar to work by Gokmen et 

al. (2012).  

The studies which have been discussed highlight some of the limitations of satellite-based 

models which are linked to the kB-1 parameter. A summary of these can be seen in Table 2.2. 

Techniques have been developed to improve the performance of models in estimating ET 

through modifying kB-1. However, the sensitivity of ET to the parameter remains to be fully 

established.  
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Table 2.2 Summary of case studies 

Study Objective Findings 

Gokmen et al. (2012) To investigate if integrating 

soil moisture influence in 

SEBS through kB-1 yields 

improved ET estimates.  

• Improved estimates of low ET 

values in drylands.  

• Maps displayed good 

contrasts between irrigated 

and dry areas in semi-arid 

regions. 

• Modification yields improved 

estimates of energy and water 

fluxes over water-stress areas.  

Chirouze et al. (2014) Evaluation of ET estimated 

from various models against 

in-situ measurements.  

• TSEB and SWAT estimated 

water stress the most 

accurately. 

• SEBS overestimated ET, 

especially under conditions of 

strong soil moisture contrast. 

Pardo et al. (2014) Evaluate H and Λ outputs from 

variations of SEBS with 

observed data. 

• Original formulation displays 

poor correlation.  

• SEBS-SM significantly 

improves H estimates but not 

Λ.  

• SEBS-NDVI improves both. 

However, improvement to H 

are more influential on ET 

estimates. 

Paul et al. (2014) Evaluation of the influence of 

kB-1 and roughness height in 

SEBAL. 

• Constant kB-1 underestimates 

H. 

• Spatially-varying kB-1 yields 

more accurate estimates under 

water-limiting conditions. 
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• ET estimates are more 

influenced by kB-1 values than 

roughness heights.  

Zhuang et al. (2016) Identifying an approach for 

estimating H without using 

kB-1.  

• kB-1 based estimates were 

more variable compared to 

LAS data than the new 

approach. 

Yi et al. (2018) Modifying kB-1 in SEBS by 

integrating soil moisture from 

the MPDI  

• Improved H estimation for 

sparse and dense vegetation 

• Reduced ET overestimation 

for water-limiting conditions 

 

2.6 Synthesis of Literature 

ET is an important process in the global hydrological cycle. Accurate estimation is vital the 

management of water resources, especially in semi-arid areas such as South Africa where high 

ET rates coupled with variable rainfall reduce assurance of water supply. This process has 

characteristically high spatial and temporal variability and remains difficult to measure over 

heterogeneous surfaces.  

While traditional in-situ techniques may provide accurate measurements at point or field scales, 

they are unable to adequately represent the heterogeneous nature of ET rates over large areas. 

Satellite-based techniques are seen as suitable alternatives to conventional approaches as they 

provide estimates at regional scales and potentially better capture ET variability. Despite these 

advantages, these techniques possess limitations. These include inter alia; trade-offs between 

spatial and temporal resolution of imagery used, mismatch of scale between study area and 

imagery pixel sizes, difficulty in estimating over heterogeneous surfaces or under cloud cover 

and inadequate representation of underlying environmental conditions.  

These limitations could be attributed to model conceptualisation. A particular limitation, the 

inaccurate estimation of ET has been identified to be relevant to applications in water-stressed 

environments. Inadequately accounting for soil moisture has been cited as a possible reason for 

this discrepancy. Furthermore, several studies have attempted improvements through the 

modification of the kB-1 excess resistance to heat transfer parameter, which is found in most 

energy balance models. Therefore, it would be necessary to first establish if the parameter does 
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influence ET estimation. It could be possible that there is an issue within the kB-1 

parameterisation, which may impact model outputs. This would also need to be determined.  

The SEBS model has been shown to inaccurately estimate ET under conditions of water stress, 

when compared to other energy balance models. This has been attributed to the model failing 

to adequately consider the influence of soil moisture. Numerous studies have attempted to 

improve estimates by modifying kB-1 through the application of various techniques. The 

integration of soil moisture influence in SEBS through kB-1 appears to be an appropriate 

technique to improving ET estimation in water-limited, semi-arid regions.  

Despite being extensively discussed in literature, kB-1 remains a complex parameter, owing to 

being influenced by various soil-plant-atmosphere characteristics. Hence it can be inferred that 

an improved understanding of the relationship between kB-1 and ET is needed. This would likely 

be beneficial to any technique which employs the parameter. SEBS-SM is the modified version 

of SEBS which integrates soil moisture into the calculation of kB-1
 values. Hence a similar route 

can be followed to test the sensitivity of ET to kB-1. This would involve a comparison of 

estimates between SEBS, SEBS-SM and a reliable in-situ data set. Such a test would provide 

insight into the actual sensitivity of the model to kB-1 in conditions where soil moisture would 

have a strong influence. This would in turn provide a platform for future research into 

modifying kB-1 so that models which utilise it in flux calculations will yield more accurate 

estimates.  
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3. METHODOLOGY 

The study made use of the SEBS model contained in the Integrated Land and Water Information 

System (ILWIS) software package (52°North, 2015). This required meteorological data on 

atmospheric properties as well as in-situ measurements of energy balance components.  

3.1 Study Site Description 

The study area falls within the Groot Letaba River Catchment in north-eastern South Africa. 

This is a semi-arid region and predominantly savannah environment, which experiences 

seasonal rainfall with the majority occurring in summer months (Gokool et al., 2017). The river 

system has been known to experience water shortages, affecting water resources management 

activities (Gokool et al., 2017). These conditions make it suitable to the scope of the study, 

which seeks to examine ET estimation under water-stressed conditions. The study site is around 

the Malopeni Flux Tower (-23.8330 S; 31.2150 E). This is an Eddy Covariance system, which 

provided micrometeorological measurements and the validation data for the study.  

3.2 Data Collection 

The time frame of the study followed the period when the most continuous record of latent heat 

and ET data was available in the validation dataset. Missing records, required for modelling, 

were infilled using data from the nearest available flux tower (-23.6580 S; 31.0470 E). The 

period under study ran from the 12th of June to the 12th of August 2015. For the study period, 

Atmospheric measurements of Ozone, Water vapour and Atmospheric Optical Thickness 

(AOT), were obtained from the National Aeronautics and Space Administration (NASA) earth 

observations website (NASA, 2018b). Atmospheric parameters were obtained for the location 

closest to the study site (-23.8750 S; 31.6250 E). The parameter values, shown in Table 3.1, were 

assumed to remain constant throughout their respective months.  

Table 3.1 Atmospheric parameters used in modelling 

Parameter June July August 

AOT (550 nm) 0.091 0.051 0.157 

Water Vapour (cm) 1 1 1 

Ozone (atm. cm) 0.248 0.249 0.273 
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The imagery used was obtained from the NASA Level-1 and Atmosphere Archive & 

Distribution System (LAADS) Distributed Active Archive Centre (DAAC). The MODIS Terra 

data products with Level 1-B Calibrated Radiances (MODO21KM) and Geolocation (MODO3) 

imagery were used for each day in the study period. These products have a 16-day repeat cycle 

and provide 250 m, 500m, and 1000 m spatial resolutions for different bands.  (NASA, 2018a).  

3.3 Data Processing and Analysis  

The imagery obtained underwent stages of pre-processing prior to being run through the SEBS 

model. These involved file formatting, Brightness Temperature Computation, Soil Moisture 

Atmospheric Correction (SMAC) and calculation of land surface variables. The methodology 

for pre-processing was taken from a SEBS model guide and other studies (Gibson et al., 2011; 

Su and Wang, 2013; Gokool et al., 2016).   

The model was run using input maps generated during pre-processing as well as meteorological 

data inputs synchronous with the time of satellite overpass for image capture. A reference height 

of 2 m, planetary boundary layer (PBL) elevation of 1000m and 10 daily sunlight hours were 

assumed, as per SEBS default settings (Su and Wang, 2013). The model was run for each day 

in the study period for a total of 62 days, approximately a two-month period.  

A primary objective of the study was to test the sensitivity of estimated ET values to the kB-1 

parameter. Following completion of the base runs, the kB-1 maps generated were successively 

decreased by intervals of 10, 25, 50 and 75 percent. The decreased maps were then used in 

secondary model runs for the entire study period. The changes in ET estimation induced by 

altering the kB-1 parameter were then studied. In addition, the trends in kB-1 and evaporative 

fraction values were examined. Initially, the trends in data between the base ET values and 

validation data were to be analysed. Any differences induced by reducing kB-1 were then to be 

determined by examining the percentage differences between values from base runs, reduction 

runs and validation data. This involved graphical and statistical analysis.  
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4. RESULTS 

4.1 Modelling of ET 

The initial phase of modelling involved base runs for SEBS using input data and imagery. 

Thereafter, secondary runs in which kB-1 was successively reduced by percentage intervals were 

performed. The results from the percentage reduction runs in comparison to the base and 

validation ET values can be seen in Figure 4.1. It should be noted that on several days, the ET 

increased with kB-1 reduction, creating error days. These are included in the graphs and statistics 

shown in Table 4.1. However, the error days were removed for Table 4.2 to determine their 

influence on overall results. kB shown in the graphs and tables represents kB-1.  

 

 

Figure 4.1 Trends in ET values throughout model runs 
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Table 4.1 Statistical analysis of ET modelling results 

Statistic Malopeni 

Flux ET 

(mm) 

SEBS Base 

Run ET 

(mm) 

-10% kB 

ET (mm) 

-25% kB 

ET (mm) 

-50% kB 

ET (mm) 

-75% kB 

ET (mm) 

Mean 0.673 2.996 2.870 2.759 2.527 2.096 

Maximum 1.334 6.041 6.208 6.451 6.182 7.228 

Minimum 0.157 0.000 0.000 0.000 0.000 0.000 

Standard 

Deviation 

0.231 1.128 1.194 1.272 1.435 1.680 

Variance 0.053 1.273 1.425 1.618 2.059 2.824 

 

Table 4.2 Statistical analysis of error-excluded modelling results 

Statistic Malopeni 

Flux ET 

(mm) 

SEBS Base 

Run ET 

(mm) 

-10% kB 

ET (mm) 

-25% kB 

ET (mm) 

-50% kB 

ET 

(mm) 

-75% kB 

ET(mm) 

Mean 0.694 2.842 2.644 2.470 2.120 1.502 

Maximum 1.334 4.174 4.124 4.035 3.821 3.450 

Minimum 0.316 0.000 0.000 0.000 0.000 0.000 

Standard 

Deviation 

0.206 0.928 0.963 1.004 1.127 1.143 

Variance 0.043 0.860 0.927 1.007 1.270 1.307 

 

It can be seen that the estimated ET values (Figure 4.1) are significantly higher than those in 

the validation data. Reducing the kB-1 parameter generally results in a lower ET than in the base 

run. There are however, certain days in which this does not occur. The days on which ET 

increases with kB-1 reduction are considered error days. There are more days in which kB-1 

reduction does lower ET than not. The statistical analysis (Table 4.1) shows that the mean ET 

value decreased as kB-1 was successively lowered. The reduction appears to be non-linear. A 

similar trend is seen in the maximum values. However, the standard deviation and variances 

increase with kB-1 reduction. The reduction resulted in zero-values for the minimums. This was 

not excluded from the dataset as it was deemed to be an error free run. The minimum value was 

low for the validation data as well. There is significant reduction in mean ET when the error 

days are excluded (Table 4.2). This may be due to the error days containing significant ET 



20 

 

overestimations. The standard deviations and variances increase with successive runs as well, 

however, they are lower when the errors are excluded.  

4.2 Examination of Changes Induced By kB-1 Reduction 

The percentage differences between estimates of ET following kB-1 reduction were compared 

to the ET values produced in the base run. This was performed to establish how much of a 

change reducing the parameter would induce on estimated ET. The trends in the percentage 

differences can be seen in Figure 4.2. Furthermore, the percentage differences between 

estimated ET values in each run and the ET from the validation data can be seen in Figure 4.3. 

This shows how altering kB-1 may generate ET values closer to ground measurements. 

 

Figure 4.2 Percentage differences between kB-1 reduction runs and the base run 

 

The percentage difference graph (Figure 4.2) shows that the majority of values in each run 

display a negative difference. This shows that most values decrease with kB-1 reduction, in 

comparison to base run values. However, days which display positive differences correspond 

to error days. It can also be seen that the length of the percentage difference lines generally 

increase with kB-1 reduction. This trend is shown on both positive and negative difference days. 

The increase is non-linear however; a clear change from base run values is visible.  
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Figure 4.3 ET percentage differences between all model runs and the validation data 

 

The percentage differences between estimated ET and the validation data (Figure 4.3) are much 

higher. This shows that in general, there is a significant overestimation of ET. The majority of 

values show positive differences. However, there are days in which negative differences are 

also displayed. The negative differences show that estimated ET was in fact lower. These may 

be attributed to modelling error. For days with positive differences, the majority of percentage 

differences appear to decrease as kB-1 decreases. The trend is non-linear and there are certain 

cases of exception. The overall result of the percentage difference tests shows that a decrease 

in kB-1 does not seem to yield a proportional decrease in ET. 
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4.3 Trends in Values of the kB-1 Parameter 

In the initial phase of modelling, SEBS was allowed to generate values for kB-1 to use in ET 

estimation. In the secondary runs, the original values were reduced. The values varied from day 

to day and the distribution of kB-1 values over the study period can be seen in Figure 4.4.  

 

 

Figure 4.4 Trends in kB-1 values from base and reduction runs 

 

The values of kB-1 vary over the study period, showing that various conditions may influence 

them. They are not fixed for the study location as environmental factors may change with time. 

Certain days display negative values which may be attributed to error. These may have 

contributed to the occurrence of ET error days. 
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4.4 Trends in the Evaporative Fraction Values 

The evaporative fraction (EF) influences ET estimation. Therefore, an examination of values 

was reasoned as a possible means of explaining the ET error days. The EF is a SEBS output 

and the trends in calculated values alongside ET values from the base and 25 % reduction runs 

can be seen in Figure 4.5. A reference line showing the threshold for EF is also displayed.  

 

 

Figure 4.5 Trends in evaporative fraction values over the study period 

 

The maximum possible value of the EF is represented by the reference line (Figure 4.5). There 

are certain days on which the EF is greater than this value. In general, values of ET on these 

days appear to increase rather than decrease. However, there is an exception to this as well 

where significantly high EF values did not yield an ET increase. Hence, in most cases when EF 

is already greater than 1 in the base run, a reduction in kB-1 induces a further increase, which in 

turn increases ET instead of decreasing it.  
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5. DISCUSSION 

The base runs for the SEBS model resulted in ET estimates which were on average, significantly 

higher than ET values in the validation data. The estimated ET values were more than three 

times higher. This can potentially be attributed to SEBS inadequately accounting for the 

influence of soil moisture (Gokmen et al., 2012; Gibson et al., 2013; Yi et al., 2018). This 

limitation results in ET overestimation under water-limiting conditions, which is seen in the 

results of the base runs. Drought conditions induced by an El Nino period prevalent during the 

study time frame may have contributed to water-stress  (Gokool et al., 2017).  

The general trends in the results showed that reducing kB-1 in the secondary runs successfully 

lowered the overestimated ET, bringing it closer to validation data values. The greatest change 

was induced when kB-1 was reduced by 75 %. There does not appear to be a linear relationship 

between kB-1 reduction and the change in ET obtained in comparison to the base run. It can be 

reasoned that since kB-1 is a highly sensitive parameter, the result obtained from altering values 

would vary. However, it appears that if the error in kB-1 value utilised is moderately low, the 

effect on model outputs will be relatively small. This is shown by the results of the 10 % and 

25 % reduction runs, which did not yield ET values greatly different to those in the base run.  

An assumption is being made that the validation data is correct. There is a possibility that since 

the Malopeni Eddy Covariance system did not have complete records on certain days, the daily 

ET values may not be accurate representations and could possibly be lower than what they 

should be. Hence the case of significant overestimation expressed by the SEBS estimated ET 

results could be less pronounced in reality.  

It should be noted that there were certain days on which the estimated ET increased despite the 

kB-1 being decreased. Further examination of model outputs revealed a relationship between ET 

overestimation and values of the EF. It was found that when the EF exceeded the threshold 

value of 1 during the base runs, further reducing kB-1 generally resulted in an increase to the 

EF. This in turn caused ET to have a higher value than in the base run.  

The function of kB-1 is correcting for the difference between radiometric and atmospheric 

temperature. Days which have a high difference, possible due to a high LST, would need a high 

kB-1 value to moderate it (Brenner et al., 2017). However, since the value was reduced in this 

study, it could have been reduced to a lower value than was needed to moderate the radiometric-

atmospheric temperature gradient. The higher the gradient, the higher the EF (Brenner et al., 
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2017). Hence further decreasing kB-1 resulted in a higher gradient and a higher EF, which in 

turn resulted in ET increasing rather than decreasing.  

Despite the EF threshold value being 1, there are known cases where it can exceed this value. 

One example is when model-estimated surface temperature is less than air temperature, which 

then results in a negative H value. This can occur in either stable or strong horizontal advection 

conditions (Lu et al., 2013). In this instance, the H would be underestimated resulting in an 

overestimation of the relative evaporative fraction which in turn causes the EF to be 

overestimated (Lu et al., 2013). The major reasons for H underestimation in SEBS and hence 

EF overestimation are lack of energy balance closure, underestimation of Rn - G, land types 

with higher ET in a MODIS pixel and incorrect calculation of aerodynamic parameters (Lu et 

al., 2013). The model is highly complex and therefore any combination of several minor factors 

could have resulted in the EF values exceeding the threshold and resulting in error. The trends 

in the H values estimated could be studied further. However, due to time constraints and scope 

of the study, this was not possible.  

The existence of such EF errors in the results suggests that either the kB-1 may have been 

reduced too low or some of the conditions for EF exceeding the threshold value had occurred. 

These possibilities would account for why ET increased on certain days despite kB-1 being 

decreased. However, EF is one of the last variables calculated in SEBS, there are numerous 

other variables which are calculated leading up to it, hence a straightforward relationship 

between EF overestimation and ET overestimation may not exist. Further examination of the 

major variables would be needed to determine the root cause of the error. However, the issue 

with kB-1 reduction and EF values discussed could be a major influencing factor in this case.  
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6. CONCLUSION 

Satellite-based ET estimation is viewed as a suitable alternative to traditional in-situ techniques. 

However, energy balance models which utilise satellite data are not without limitations. 

Inaccurate ET estimation has been linked to inadequately accounting for soil moisture 

influence. ET reduces available water supply and therefore, accurate quantification is vital for 

water resources management in water-scarce environments. The purpose of this study was to 

evaluate the influence of kB-1 on satellite-based ET estimation in a water-stressed environment.  

Modification of kB-1 has been shown in several studies to improve upon the soil moisture 

limitation. However, there was a need to determine how sensitive ET estimates are to kB-1.  

The SEBS model was selected to test the influence of kB-1 on ET estimation. Initial results 

displayed an overestimation of ET in comparison to validation data from an Eddy Covariance 

system. This was followed by secondary runs in which reduced kB-1 values served as model 

inputs. In most cases, this resulted in lower ET estimates, which agreed with the literature 

reviewed. However, there were certain days on which ET increased as kB-1 was decreased. A 

key finding was that on such days, the EF had exceeded a threshold value and would generally 

continue to increase with successive model runs. This was determined to possibly be due to the 

kB-1 values being reduced too low to be able to moderate the radiometric-atmospheric 

temperature gradient, which allowed the EF to increase above the threshold value and cause ET 

to increase from base run values. Hence what was found is that the SEBS model will likely 

overestimate ET under water-limiting conditions, such as those in the study area and by 

lowering kB-1, the overestimation will generally be reduced. However, there is a possibility that 

the parameter could be lowered further than necessary and induce an EF error.  

The study was a relatively simple test on a complex model parameter. Although EF error was 

identified as a potential aggravator of ET overestimation, a more in-depth analysis over a longer 

time frame, considering other influential variables such as H, is needed. Future studies should 

consider the influence of the EF in greater detail and explore the possibility of modifying the 

parameterisation to limit exceedance of the threshold value. The key findings of this study may 

potentially contribute to a further understanding of the complexities of the kB-1 parameter in 

energy balance models. There is potential for application in future research where kB-1 is 

concerned and in the on-going improvement of satellite-based ET estimation techniques for 

water resources management in arid and semi-arid regions.  
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